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Abstract
1. Automatic monitoring of wildlife is becoming a critical tool in the field of ecology. 

In particular, Radio- Frequency IDentification (RFID) is now a widespread technol-
ogy to assess the phenology, breeding and survival of many species. While RFID 
produces massive datasets, no established fast and accurate methods are yet 
available for this type of data processing. Deep learning approaches have been 
used to overcome similar problems in other scientific fields and hence might hold 
the potential to overcome these analytical challenges and unlock the full potential 
of RFID studies.

2. We present a deep learning workflow, coined “RFIDeep”, to derive ecological 
features, such as breeding status and outcome, from RFID mark- recapture data. 
To demonstrate the performance of RFIDeep with complex datasets, we used 
a long- term automatic monitoring of a long- lived seabird that breeds in densely 
packed colonies, hence with many daily entries and exits.

3. To determine individual breeding status and phenology and for each breeding 
season, we first developed a one- dimensional convolution neural network (1D- 
CNN) architecture. Second, to account for variance in breeding phenology and 
technical limitations of field data acquisition, we built a new data augmentation 
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1  |  INTRODUC TION

Electronic monitoring systems have been widely used over the 
past two decades to better understand animal populations with-
out human disturbance (Fagerstone & Johns, 1987; Schooley 
et al., 1993). Radio- Frequency IDentification (RFID) technology al-
lows the monitoring of uniquely identified individuals and automated 
recording of the presence of tagged individuals at chosen locations 
(Gibbons & Andrews, 2004). By placing RFID antennas along animal 
paths, at perches or narrow entries of the breeding site (Bonter & 
Bridge, 2011; Zydlewski et al., 2006), individual survival and breeding 
rates as well as behaviour and locations can be precisely estimated 
in, for example the classical capture- mark- recapture framework 
(Le Bohec et al., 2008). While RFID technology allows the record-
ing of vast amounts of data, it also creates new challenges for data 
treatment, even if the data structure itself is rather simple (i.e. id, 
date and time, and location for each detection; Iserbyt et al., 2018). 
Because RFID data are not directly linked with biological parame-
ters, one of the classic approaches is human expert interpretation 
(Afanasyev et al., 2015; Descamps et al., 2002). Even today, most of 
the information extraction and ecological interpretation from such 
detection data is done manually, although this remains extremely 
time- consuming and potentially biased by human interpretation. 
Additionally, the difficulty in manually processing potentially large 
numbers of detection data is increased by the possibility of missing 
detections (Hughes et al., 2021).

A solution to these challenges may lie in automated data pro-
cessing that could mimic the behaviour of an expert analyst. 
Artificial intelligence has been the focus of intense methodologi-
cal effort in ecology: it has been used to process various sources 

of data including imagery or passive and active acoustic data, and 
to detect, classify, localise, identify, estimate and predict at every 
biological scale, from individuals to ecosystems (Christin et al., 2019; 
Pichler & Hartig, 2022). Among artificial intelligence methods, deep 
learning has a wide and promising scope but often lacks approach-
able workflows for ecologists. Deep learning can be generally de-
fined as a set of methods using “deep” (i.e. multi- layer) networks 
of artificial neurons to process and “learn” complex features from 
data: see LeCun et al. (2015). Among these, convolutional neural 
networks (CNN) have been initially developed for image content 
classification (Krizhevsky et al., 2017) but have also been used for 
classifying signals (Hinton et al., 2012) such as human activity clas-
sification (Mutegeki & Han, 2020), birds vocalisation classification 
(Kahl et al., 2021) or marine mammal detections (Shiu et al., 2020). 
Yet, CNN capacities remain unexplored in numerous fields such as 
RFID data processing.

Recent efforts have been made to automatically infer be-
havioural patterns from various types of biologgers through AI 
(Fannjiang et al., 2019; Wang, 2019): for instance, accelerometers 
have shown promising capacities to detect food- catching events 
(Brisson- Curadeau et al., 2021) or to classify activity (Jeantet 
et al., 2021; Sakamoto et al., 2009). RFIDeep builds upon these 
efforts to address the specific nature of RFID data. While active 
biologgers record rich, multidimensional data, their record time is 
limited because of the required trade- off between miniaturisa-
tion, storage capacity, power consumption and impact on wildlife 
(Bodey et al., 2018). In contrast, passive, battery- less RFID tags 
have no demonstrable impact on an animal's behaviour and func-
tion throughout the individual's lifetime but the trade- off is that 
although the tag is attached to the animal, detection only occurs 

step mimicking a shift in breeding dates and missing RFID detections, a com-
mon issue with RFIDs. Third, to identify the segments of the breeding activity 
used during classification, we also included a visualisation tool, which allows users 
to understand what is usually considered a “black box” step of deep learning. 
With these three steps, we achieved a high accuracy for all breeding parameters: 
breeding status accuracy = 96.3%; phenological accuracy = 86.9%; and breeding 
success accuracy = 97.3%.

4. RFIDeep has unfolded the potential of artificial intelligence for tracking changes 
in animal populations, multiplying the benefit of automated mark- recapture moni-
toring of undisturbed wildlife populations. RFIDeep is an open source code to 
facilitate the use, adaptation, or enhancement of RFID data in a wide variety of 
species. In addition to a tremendous time saving for analysing these large data-
sets, our study shows the capacities of CNN models to autonomously detect eco-
logically meaningful patterns in data through visualisation techniques, which are 
seldom used in ecology.

K E Y W O R D S
artificial intelligence, behaviour, machine learning, RFID, wildlife monitoring
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at one or more fixed points (the active antennas), thereby offer-
ing a very narrow observation window, similar to the classical bird 
ringing observation approach (e.g. with mist nets). This creates a 
rather unique data structure with specific challenges for interpre-
tation. RFID technology is also exposed to two major constraints 
because of the impossibility to detect multiple tags at the same 
time with a single antenna and the impossibility to instal several 
antennas at the same place, due to electromagnetic interference. 
By increasing probability of missing detections, the tag and reader 
collision problems create a trade- off between the number of de-
ployed tags (the size of the dataset) and the probability of unde-
tected individuals (the completeness of the dataset). This leads to 
challenges in inferring missing detections to correct the locations 
and movement patterns of individuals. Like in other automated 
data processes, such data imperfections need to be considered 
and if possible repaired with suitable algorithms.

Here, we demonstrate that non- explicit detection data from 
fixed observation points contain enough information to infer in-
dividual behaviour. Taking advantage of the recent developments 
in deep learning methods, we develop the “RFIDeep” workflow to 
automatically extract breeding status and outcome from detection 
data acquired by RFID antennas using CNN. We illustrate how deep 
learning methods detect biological features in RFID data with very 
high classification accuracy and demonstrate the use of a visualisa-
tion method not yet commonly implemented in ecology.

RFIDeep was initially developed for an “archetypal” real- life 
dataset with a ca. 25 years- long RFID detection time series col-
lected on known- age/history king penguins Aptenodytes pata-
gonicus (Gendner et al., 2005). Unlike flipper bands used until 
then, which are detrimental to the individuals (Gauthier- Clerc 
et al., 2004), the recording of every transit between the colony 
and the sea of RFID- tagged birds, throughout their life, allowed a 
more accurate and unbiased description of the reproductive pat-
terns of the species (Descamps et al., 2002), and of the popula-
tion's demographic parameters (Le Bohec et al., 2008). In these 
previous studies, all RFID detections were manually analysed by 
human experts and none of them used the entire dataset of RFID- 
tagged penguins. Since breeding king penguins exhibit highly ste-
reotyped movement patterns (Descamps et al., 2002), they were 
good candidates for artificial intelligence classification. Based on 
direct field observations and molecular sexing data, we trained 
several CNN to infer RFID- tagged penguins' sex, breeding status 
and outcome (Breeding vs. Non- Breeding; Success vs. Failure), and 
breeding dates. We developed RFID- specific data augmentation 
steps to account for biological variance and data acquisition im-
perfections. We trained our classification process with field ob-
servation data and tested it with (i) annotated data to compare the 
performance of automatic classification with the human experts 
and (ii) independent field observation data.

We provide all source codes used in RFIDeep workflow that 
could be applicable for studies using RFID data acquisition and 
that could inspire ecologists to develop their deep learning pro-
cess. Finally, a software named Sphenotron, developed to represent 

movements and locations (in or outside the breeding site) based on 
RFID detections, is provided with a sample dataset as an example of 
an RFID data visualisation method.

2  |  MATERIAL S AND METHODS

2.1  |  Overall structure of RFIDeep workflow

Figure 1 summarises the steps needed to classify RFID data within 
a deep learning framework and provides a comprehensive view of 
the use of the RFIDeep workflow. This workflow can be adapted 
to fit other acquisition systems and species, if we have access to 
(1) RFID detection data (timestamp and individual ID) collected in 
a repeatable way and (2) ground truth data for a subset of indi-
viduals. The size of this ground truth set depends heavily on the 
signal- noise ratio in the target system, but a key requirement is 
its diversity, which must cover all expected biological situations 
(Christin et al., 2019).

2.2  |  Application on a seabird species long- term 
monitored by RFID

2.2.1  |  RFID data acquisition

Here, we used data collected from the colony of king penguins 
(A. patagonicus) named ‘La Grande Manchotière’ and located at 
Possession Island, Crozet Archipelago (46°25 S, 51°45 E). This 
fieldwork was approved by the French ethics committee (last: 
APAFIS#29338- 2020070210516365) and the French Polar 
Environmental Committee and permits handling animals and ac-
cess breeding sites were delivered by the “Terres Australes et 
Antarctiques Françaises”. A sub- area of the colony of ca. 10,000 
breeding pairs has been electronically monitored since 1998 with 
RFID technology. As of 2022, four pathways between the sea and 
the colony (the only ways in or out of the colony) are equipped 
with permanent automatic identification systems (the detailed  
information of the field site and systems are described in Gendner 
et al., 2005). In short, these automatic systems are composed 
of paired antennas that record the direction of each commuting 
bird that has been implanted subcutaneously with an RFID tag. 
Patterns of presence and absence of ca. 15,000 RFID- tagged 
birds throughout their breeding seasons and life have thus been 
recorded since 1998. This has generated a large (and increasing) 
quantity of data, with, for instance, seven million individual detec-
tions as of 2022. To manage, visualise and use information in the 
field (e.g. select specific groups of birds of known age or history), 
we developed Sphenotron, a python software that displays the lo-
cation (in or out of the colony) of the individuals during their life, 
based on the latest known location transition (entrance or exit) for 
each bird (see Supporting Information A). Thanks to well- known 
king penguin's stereotyped presence/absence patterns at the 
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F I G U R E  1  Overall structure of the RFIDeep workflow classifying Radio- Frequency IDentification (RFID) data with deep learning. The 
workflow is divided into three phases: data preparation, model development, and model deployment. (a) Data preparation. (1) RFID data 
acquisition: many individuals are equipped with RFID tags and antenna systems are installed at key locations to register the detections. 
A software called Sphenotron (Supporting Information A) has been developed to represent detections and transitions (in or out of a 
specific location, e.g. a colony or a nest) of RFID- tagged individuals. A colouring scheme is available to picture the ins (orange, above the 
line) and outs (blue, below the line) of tagged individuals. (2) RFID data pre- processing: a correction of missing detections is first applied. 
RFID data are then formatted (e.g. in or out of a specific location encoded as 1 and 0, and number of detections per time period) to have 
a unique and readable format for deep learning or for other analyses. (3) Building the training dataset: direct observations of RFID- tagged 
individuals are used to build a ground truth dataset of labelled vectors giving the true classification. (b) Model development. (4) Building 
and tuning the convolution neural network (CNN) models: the architecture of deep learning models and hyperparameters are tuned with 
the training dataset. Data augmentation is implemented to cover more biological and technical variance. An individual network is built for 
each classification problem (e.g. breeding status, sex). (5) Post- processing: classification networks are derived to extract other biological 
information requiring a post- processing step such as location of stereotyped patterns in RFID data (e.g. determination of the breeding 
dates with a probability curve (in blue) over presence/absence pattern in black and white, respectively). (6) Visualisation tools: models are 
validated and interpreted with visualisation tools (e.g. with black curves representing the focus of the model during the breeding season). 
(c) Model deployment. (7) Building the testing datasets: a testing step is used to remove biases induced during parameterisation with 
independent datasets (i.e. human expert classifications and independent ground truth dataset). (8) Testing the CNN models: model tests 
assess performance but also ensure that models consistently perform according to classes and individual characteristics (e.g. age, sex and 
life stage). (9) Application: classifications are applied to all detection data after pre- processing and formatting (i.e. after correction of missing 
detections and building of vectors), and results are represented in Sphenotron for each individual (successful breeding cycles “S” in green, 
failed breeding cycles “F” in red).

(a)

(b)

(c)
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breeding site (see Figure S7), we can classify the breeding status 
of any RFID- tagged individual (Non- Breeding, Failed Breeding, 
Successful Breeding). Start of a breeding cycle (breeding date) can 
also be determined, it is defined as the beginning of the pattern 
characteristic of the courtship and incubation period, that is the 
first long sojourn at the colony following the annual moult and 
exceeding 10 days (Descamps et al., 2002). Additionally, the sex of 
an individual can also be derived from presence/absence patterns 
at the colony. An automatic sex determination has great potential 
application for many species where sex determination is challeng-
ing (i.e. monomorphic species like king penguins).

2.2.2  |  RFID data pre- processing

Input data
To prepare the detection data in an appropriate format, we chose 
to represent absence and presence time- series for each breeding 
cycle with two vectors providing the location of the individual at 
the end of 12- h periods (states 0 and 1) and the number of de-
tections occurring during the 12 h (Figure S8). For one individual 
and one given year n, we built vectors encompassing the breeding 
cycle. For the King penguin, vectors start 1 October of the year Y 
and end 31 January of the year Y + 2 to cover the entire >1- year 
breeding cycle of the species (Figure S7). We obtained two vectors 
of 974 elements for each individual and each year. This step can be 
tailored to match other RFID acquisition systems and species, for 
instance by dropping the first vector when no location (‘in’ or ‘out’) 
is defined but only simple detection are recorded, for example at 
a feeding site.

Missing detection correction
To tackle missing detections that can occur when individuals exit or 
enter their breeding site, we developed an algorithm to repair sim-
ple missing detections (i.e. detections on only one antenna of a pair, 
resulting in uncertainty in the individual's walking direction), as was 
similarly done by Austad et al. (2023). These corrections are usually 
trivial: for example, when an individual is detected only on the inside 
antenna, followed later by an entrance (i.e. outside- inside transition), 
an outside detection is inferred to restore a valid pattern in detec-
tions corresponding to the missed exit from the colony. We simply 
built the algorithm to detect all unrealistic successions of detections 
and to add the corresponding missing detections in all possible cases 
(see Supporting Information B).

2.2.3  |  Building the training dataset

To build a training/ground truth dataset, we visually monitored 
295 RFID- tagged individuals over 9 years (2011– 2019), assessing 
their breeding status and behaviour directly through field obser-
vations. Birds were monitored from the beginning of the breeding 
season (November– January), thereby we were able to detect early 

breeding failures that may have been difficult to distinguish from 
non- breeding behaviour using RFID detections alone. Breeding out-
comes (S: Success; F: Failure) from these study birds was determined 
according to the survival of their chicks until they fledged. The sex of 
individuals was determined with the observation of their first period 
in the colony, as females leave the breeding site right after egg lay-
ing, while males care for the egg (Descamps et al., 2002). A ground 
truth database with breeding status, timing of breeding, and sexing 
for 463 breeding cycles was then compiled over the years.

2.2.4  |  Building and tuning the CNN models

Several models were built to describe breeding activities from regu-
lar movement patterns (see Figure S7) with a classification workflow 
(see Figure S9):

1. Two models to determine if an individual in a given year was 
a breeder (Breeding vs. Non- Breeding) and if the breeding 
cycle was successful (Success vs. Failure),

2. A model to distinguish the sex of an individual through sex classi-
fication of only breeding cycles and a prediction compiling all the 
sexes identified over the lifetime breeding seasons,

3. A model to determine the most likely breeding date of males and 
females separately, through post- processing of a CNN model.

CNN architecture of these models was chosen using a classical 
simple architecture (see LeCun et al., 2015) and through trial and 
error (see details in Figure S10). Each model was trained on a train-
ing set of 80% of the dataset, and the remaining 20% was used as a 
validation set to measure model performances and avoid overfitting 
(shown by low validation accuracy and high training accuracy), as 
suggested by Christin et al. (2019). Multiple training of the models 
with random splitting of the training/validation sets was performed 
to cross- validate the hyperparameters. Once the final hyperparam-
eters were chosen, validation accuracy with the 20% validation set 
was recorded, and the final models were trained with 100% of the 
training datasets. When the models were applied to detection vec-
tors to generate the classifications, the most probable class was cho-
sen for the classification.

To extend the generalisation capacities of our models, we used a 
data augmentation process during the training of the models, in the 
sense of a distortion of the data (LeCun et al., 1998). In other words, 
during the training, the dataset is perturbed in a controlled way at each 
iteration: while the data quantity remains unchanged, its variability is 
increased, thus covering more possible situations, and avoiding over-
fitting. We used two types of augmentation: the first one consisted in 
shifting the breeding cycles by a random number of days, as usually 
done with imagery data to make the models translational invariant. At 
each iteration of the training, we shifted each training vector by a zero 
padding at the end or at the beginning of the vector, while trimming the 
same number of elements on the opposite side. We used a random off-
set between −30 and 30 days to cover large biological variability in the 
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phenology of our species (but this can be easily changed in the code, 
and this step can be turned off). The second part of data augmentation 
focused on simulating missing RFID detections. In the actual dataset, 
the most frequent problem is the loss of a single detection, which is 
solved by our correction algorithm. Therefore, we chose to remove 
10% of the single detections at each iteration, before applying our cor-
rection algorithm, allowing a complete recovery of the original detec-
tions for at least 50% of individuals (see Supporting Information C) and 
leaving uncorrected detections and erroneous locations to improve 
training generality. Models for determining the breeding status were 
trained with and without these data augmentation processes to assess 
the benefits of this step.

2.2.5  |  Post- processing

Sex determination
With RFID detections of king penguins, a human expert can only 
distinguish males and females based on the length of the first peri-
ods in colony of the breeding cycles, therefore we thought it safer 

to assume that prediction over a single breeding season would be 
less reliable than prediction over the whole lifetime. We then aver-
aged the classification probabilities for each sex, for each identified 
breeding attempt and we obtained the most probable sex over the 
lifetime of the individuals. We also registered the sex classification 
for each breeding cycle to measure the benefit of this pooling in clas-
sification performance. This step can be skipped for species where 
sex is readily identified but can be useful for species such as seabirds 
in which sex can be more easily determined using behavioural data.

Breeding date
We used CNN models to determine the breeding date by scanning 
all possible breeding cycles in a year and determining the most prob-
able one (see Supporting Information D for details on the method). 
We obtained a certainty curve along the year, with the maximum 
corresponding to the most probable breeding date (as illustrated in 
Figure 2 with two true breeding cycles). In our King penguin study 
case, we trained two different models for males and females sepa-
rately to account for the difference in patterns at the beginning of 
their breeding cycles.

F I G U R E  2  Examples of certainty maps produced by the scanning algorithm to detect the beginning of a stereotyped pattern. Here, 
the most probable breeding date of a male and a female was determined. The blue curve represents the probability (between 0 and 1) 
that the breeding cycle starts on a relevant date. The black and white bars in the lower part of the figures represent the location of the 
Radio- Frequency IDentification (RFID)- tagged individual (inside and outside the colony, respectively). The most probable breeding date 
corresponds to the maximum of the blue curve (dashed line).
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2.2.6  |  Visualisation tools

We used visual explanation techniques to show parts of the input 
data that are identified by the convolutional layers and used to 
perform the classification. We leveraged techniques recently de-
veloped to produce heat maps on images classified by a 2- D CNN 
algorithm to show which pixels contribute most to the classification 
(saliency maps, Zeiler & Fergus, 2014 and class activation mapping, 
Zhou et al., 2016). We produced this type of visualisation on breed-
ing cycles with the GRADient- weighted Class Activation Mapping 
(Grad- CAM) algorithm (Selvaraju et al., 2017) that was directly ap-
plicable to the 1- D CNN layers. In short, the Grad- CAM uses the 
gradients of the final convolutional layer to produce a coarse locali-
zation map from an input image (or vector) by searching for pixels 
whose intensity should be increased to increase the probability of a 
given class. We ran this algorithm on all breeding cycles in our data-
set and obtained a graph of importance value for each element of 
the vector (each 12- h period in our example) for a particular class of 
interest. We computed these activation plots and compared to the 
raw input detection data for (1) the Breeding versus Non- Breeding 
model, which restricts the dataset to breeding cycles classified as 
breeding in order to identify the features used by the algorithm to 
detect a breeding cycle, and (2) the Success versus Failure model, 
which includes only breeding cycles classified as successful in order 
to identify the regions of the breeding cycle that were indicative of 
a success.

2.2.7  |  Testing the CNN models

To test the overall classification performance, we used a 
global accuracy metric of the different models given by 
ACC = Ncorrectpredictions ∕Npredictions (Powers, 2020). Since our ground 
truth datasets were well balanced across classes (168 Non- Breeding; 
131 Failure; 164 Success), the global accuracy metric did not ap-
proach its limits through class unbalance, and it provided a simple and 
effective metric of overall classification performance for training. To 
provide a measure of classification accuracy for all possible classifi-
cation thresholds, we also used the AUC- ROC score (Area Under the 
Receiver Operating Characteristic Curve; Fawcett, 2006). To assess 
the accuracy of breeding date determination, we used a threshold 
of 5 days between the true breeding date and the predicted date 
to define whether or not a breeding date was correctly predicted 
(see Supporting Information E). Two fully independent datasets that 
were never used in model training were used to quantify an unbiased 
estimate of model performance (Kuhn & Johnson, 2013): (i) an addi-
tional ground truth dataset for years 2021 and 2022 containing 302 
field observations of breeding outcomes only (Successful or Failed 
breeding seasons) and (ii) a blind- labelled testing dataset encompass-
ing 917 breeding cycles of penguin individuals: breeding status and 
breeding date were not determined through field observations but 
by human experts who examined the RFID detections of individuals 
using our custom- designed Sphenotron software (see Supporting 

Information A). Human experts, with a strong knowledge and expe-
rience of the species in the field, were trained using the ground truth 
dataset, blindly examining detection data to infer breeding cycles, 
and cross- checking previously assigned breeding cycles. Two human 
experts were chosen to label the same dataset, and we tested our 
models with both classifications. We also computed the global accu-
racy metric between the datasets labelled by the two human experts 
to assess human variability in classification. The performance of the 
lifetime sexing method was compared to a molecular sexing data-
set of 6196 birds (molecular sexing method adapted from Griffiths 
et al., 1998 showing 100% accuracy in typical cases, Purwaningrum 
et al., 2019). Because sex was estimated with a variable number of 
breeding cycles between individuals (we used all available breeding 
cycles for each bird), we also tested whether the accuracy of pooled 
sexing increased when including additional breeding cycles. Finally, 
we computed the accuracy of the models for each age class and for 
males and females separately to test whether the performance of 
our models was consistent over the whole dataset.

3  |  RESULTS

3.1  |  Model training

We chose 200 epochs (i.e. training iterations) for training of 
each model, which yielded the best results for validating model 
accuracy while avoiding overfitting. Each model took approxi-
mately 1 h to train using a laptop computer with a CPU Intel Core 
i7- 10750H (2.60 GHz) and a GPU Nvidia GeForce GTX 1660 Ti, 
a non- prohibitive technology as of 2023. The performance of 
models, according to the validation datasets used to select the 
CNN architecture and hyperparameters, reached near perfec-
tion for the three models, that is Breeding versus Non- Breeding, 
Success versus Failure, and Male versus Female, with global ac-
curacy of 99.1%, 99.7% and 100%, respectively. As expected, the 
three models without a data augmentation step achieved lower 
performances with global accuracy of 94.6%, 91.5% and 96.6% for 
Breeding versus Non- Breeding, Success versus Failure, and Male 
versus Female, respectively.

3.2  |  Model visualisation

Activation maps Lc
(grad−CAM)

 (Figure 3) showed that for the vectors 
classified in the Breeding class (i.e. individuals that attempt to breed; 
Figure 3a,c), the model focused on the beginning of breeding, when 
long periods in the colony occur for breeders but not for non- 
breeding birds that do not have long fasting periods on the breed-
ing site. For the Success class (Figure 3b,d), the model focused the 
pre- winter period and the post- winter feeding period. As expected, 
these are the parts of the breeding cycle that can be missing if the 
breeding fails during incubation, brooding or even during the winter 
fasting period. Unsurprisingly, the visualisation maps relied on the 
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same regions that human experts reported using as criteria for de-
termining whether individuals actually attempted to breed and suc-
ceeded in breeding.

3.3  |  Model deployment

The trained models were used to predict the breeding status and 
dates of all RFID- tagged individuals since 1998 (i.e. 85,524 breeding 
cycles from 14,795 different individuals). On the laptop computer 
used here, prediction (from raw RFID data to classification) of breed-
ing status and sex of all birds required 140 s, but it took 1.1 h for the 
determination of the breeding date due to the number of predictions 
needed (320 for each breeding cycle). In comparison, it took a human 
about 1 min to make the same decision as RFIDeep for one bird and 
one breeding cycle, which would correspond to 1320 h or 165 work-
days (8 h per day) to classify all breeding cycles. Tests of model's clas-
sifications against two human expert classification datasets resulted 
in high global accuracy metric (Table S1, e.g. ACCBvs.NB = 0.963 and 
ACCSvs.F = 0.967 for prediction vs. dataset 1). Similarities between 
the expert- labelled datasets were globally equivalent to the accuracy 

of our CNN models, indicating the high performance of the auto-
matic classification procedure. The AUC scores of Breeding versus 
Non- Breeding and Success versus Failure computed with the human 
expert classification were even higher (e.g. AUCBvs.NB = 0.993 and 
AUCSvs.F = 0.992 for prediction versus dataset 1, see Figure S11). As 
expected, models with data augmentation consistently performed 
better than models without any transformation of the input data. 
Furthermore, tests on the independent ground truth dataset con-
firmed the high performance: all cycles were indeed well classified 
as breeding season and Success versus Failure classification reached 
a 96% accuracy and an AUC- ROC score of 0.995. The lifetime clas-
sification sexing procedure yielded an 88.6% accuracy compared to 
the molecular data (AUCsex = 0.930 see Figure S12). Before pooling 
lifetime sex probabilities, the global accuracy of sexing was only 
81.7%. As expected, we also found that sex classification accuracy 
from the pooling of lifetime sex probabilities increased with the 
number of breeding cycles used to determine the sex of an individual 
(see Figure S12). According to the expert- labelled dataset 1, predic-
tions were slightly better for males than for females for the breed-
ing status (ACCmales = 0.945 vs. ACCfemales = 0.932) and inversely for 
the breeding dates (ACCmales = 0.852 vs. ACCfemales = 0.889). The 

F I G U R E  3  Activation map (blue curve) showing regions of the cycle used by the convolution neural network procedure to produce 
the classifications and simplified presence/absence pattern (black: inside the colony; white: outside the colony) for two true breeding 
cycles (a, b), and median maps (c, d) illustrating all maps with the median curve, the first quartile and the third quartile. (a, c) Correspond 
to the Breeding class (all breeding cycles classified as Breeding) and (b, d) to the Success class (all breeding cycles classified as Success), 
respectively.

(a)

(b)

(c) (d)
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breeding dates also appeared to be less predictable for young indi-
viduals (see Figure S13).

4  |  DISCUSSION

In this study, we developed and tested a complete workflow based 
on CNN models to automatically infer behavioural and fitness traits 
from RFID- tagged animal detection data. Based on a train- test 
split approach, we showcased the potential of deep learning to ad-
equately replace human expertise in RFID data processing in a much 
shorter time span. Remarkably, humanlike performance to translate 
patterns from detection data into meaningful biological parameters 
was reached with a rather simple CNN architecture and standard 
desktop computing capacity. To improve results, we used time- shift 
data augmentation to mimic the variability that could occur due to 
biological mechanisms (e.g. a shift in breeding dates) and simulated 
data dropouts to mimic technical constraints (e.g. missing detec-
tions). We also developed a post- processing step to extract dates 
of breeding, and, with a visualisation technique, we identified the 
regions of the dataset used by the models to classify the breeding 
cycles. Such a framework can be used beyond our example dataset 
and help to quickly classify the breeding activities of many individu-
als, even more so for long- term projects for which pre- processing 
analysis is very time-  and labor- consuming (in our example, we 
worked on ca. 15,000 individuals over ca. 25 years). Certainly, we 
do anticipate a wide application for other colonial birds with their 
many ins and outs of their colonies and with their complex patterns 
of phenology— however, we acknowledge that RFID monitoring 
may be more challenging in some species (Bonter & Bridge, 2011). 
For non- colonial species, we anticipate a good performance of our 
model with likely simpler RFID data (e.g. simple detection at a feed-
ing site), if detection rate is high enough to capture regular patterns. 
While it is still challenging to successfully transfer pre- trained deep 
learning from a study case to another (Marcus, 2018), RFIDeep 
workflow is tailored for any study classifying behaviours based on 
RFID- tagged animal detections. RFIDeep was successfully tested 
and used on another species, the Adélie penguin (Pygoscelis adeliae), 
for which breeding is markedly different from our first dataset ex-
ample, yet monitored with a similar automatic RFID setup. Given 
that our model performed well for these contrasting datasets (global 
accuracy of 95.2% for breeding outcome determination and 93.5% 
for sex, see Supporting Information F for details), we argue that 
any RFID- monitored species with stereotyped movements during 
a given life stage could certainly benefit from the RFIDeep work-
flow, such as bumblebees (Molet et al., 2008), Leach's Storm- petrels 
(Zangmeister et al., 2009), hummingbirds (Bandivadekar et al., 2018), 
as well as other penguin species (Chiaradia & Kerry, 1999; Horswill 
et al., 2014). Other configurations of acquisition system are com-
patible with this workflow, as for example (1) RFID antennas at the 
entrance of cave for Yelkouan Shearwater (Puffinus yelkouan; Austad 
et al., 2023) or for southern bent- winged bat (Miniopterus orianae 
bassanii; van Harten et al., 2019); (2) RFID- equipped nesting- box 

allowing continuous record of presence/absence in the nesting 
box of equipped individuals for Tengmalm's owl (Aegolius funereus; 
Zárybnická et al., 2016) that could certainly allow the classification 
of breeding status for multiple species with nest attendance pat-
terns (Bambini et al., 2019); (3) feeders equipped with antennas that 
detect RFID- equipped birds coming to search for food and that re-
cord frequency of visits and time- spent (Bandivadekar et al., 2018); 
and (4) safe passages equipped with RFID antennas such as eco- 
passages across/over or under roads that can be frequently used by 
some monitored individuals (Dexter et al., 2016) and be informative 
on their biological status. We are confident that the RFIDeep work-
flow will help biologists to adopt deep learning applications more 
easily, either by using the codes directly or by adapting it for their 
requirements.

Furthermore, the missing detection correction and data aug-
mentation algorithms implemented in RFIDeep have great potential 
to tackle uncompleted and/or low- quality datasets, such as those 
produced by mobile RFID antennas temporarily deployed (Cristofari 
et al., 2018). It is important to note that our correction algorithm 
does not generate new data, but explicitly fills in information (here, 
direction of the bird) that is already contained in other detections 
in order to help classification. This is in contrast with generative 
AI, which is capable of generating new data. However, classifica-
tion results could be used to recover fully missing events as a post- 
processing step: for example, we may infer a fully missing detection 
date given breeding date and outcome, and sex.

Both validation (during training) and testing steps (afterward) 
showed the high performances of the RFIDeep models, on the one 
hand, in reference to the ground truth data (96% accuracy for Success 
vs. Failure) and, on the other hand, with a human- machine compar-
ison (>96% accuracy for Success vs. Failure and >93% accuracy for 
Breeding vs. Non- Breeding). Even though we developed a software 
specifically to display detections and locations (inside or outside the 
colony) of RFID- tagged individuals during their life (Sphenotron, see 
Supporting Information A), the distinction between specific breed-
ing status can be challenging, if not impossible. For example, a con-
founding situation in our case study happens between non- breeding 
and failed breeding when the failure occurs very early in the season. 
By using automatic classification, we standardised the bias among all 
breeding classifications throughout the years of monitoring through 
the removal of variability related to potential differences in human 
expert interpretation. This allowed for remarkably fast extraction of 
life history parameters of the monitored individuals, necessary to 
estimate population vital rates (e.g. survival, breeding success) and 
viability, in addition to other breeding and phenological traits. For 
example, breeding success inferred with a very good classification 
accuracy (97.5% of accuracy in the classification of successful vs. 
non- breeding or failed breeding) can then be used to estimate fe-
cundity rates of the monitored population with high confidence for 
all monitored years. Further analysis on classification scores given by 
the models also showed that in situations where the classification is 
wrong, the score is more uncertain (average score for well classified 
success: 0.995 vs. average score for misclassified success: 0.785; see 
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distribution of scores in Figure S14). It leads us to consider an ‘un-
certain’ class to avoid misclassification of a large part of cycles that 
cannot be classified with RFID detections only.

Our analysis highlights the benefits of data augmentation to cope 
with more biological variance than contained in our ground truth 
data. Data augmentation is commonly used to improve deep learn-
ing applications (Taylor & Nitschke, 2018) and sometimes developed 
in the application of deep learning in ecology (e.g. with image data, 
Kälin et al., 2019 or audio data, Kahl et al., 2021), and has signifi-
cantly enhanced our classification process. While data augmentation 
is usually done by adding random noise to the dataset (e.g. in pic-
tures for 2- D CNN classification with image rotations for instance, 
Pawara et al., 2017), here we aimed to mimic biological variance and 
technical limitations of the RFID data acquisition systems. Doing so, 
we covered a large variance in breeding dates, enabling us to antic-
ipate breeding seasons that could begin earlier or later than those 
existing in our ground truth data, because of environmental shifts 
already observed or expected in the coming years/decades (Visser 
et al., 2021). This applies not only for the Sphenisciformes species 
used in this study but likely also for other species with a high vari-
ance in breeding phenology (De Villemereuil et al., 2020). Another 
interesting aspect of the automatic classification of breeding cycles 
is the independence among predictions. Indeed, each breeding cycle 
was analysed without supplement information about the year (e.g. 
average breeding success, phenological data), the individual (e.g. 
age, body condition), and previous and future breeding cycles. The 
breeding classification of lifetime datasets by human experts can 
induce bias for quantifying the inter- individual and intra- individual 
heterogeneity in breeding cycles since they are usually not classi-
fied independently. However, while there may be an advantage to 
having independent classifications, the lifetime information may also 
be beneficial, for instance to better determine the breeding date of 
the very first breeding seasons that tend to be less predictable for 
numerous species (see Figure S13) and to consider intra- individual 
repeatability of phenological and behavioural traits. It would also be 
useful to train CNN models with mixed data (e.g. RFID detections and 
automated weighting at the detection point) to increase the classifi-
cation accuracy and/or complexity, and to refine further some of the 
analyses (e.g. the stage of breeding failure), as it has also been done 
in other fields (Ahsan et al., 2020). With visualisation techniques, we 
showed which parts of the datasets are mostly used to perform clas-
sification. They provided a peek into the deep learning ‘black box’, 
making the process more transparent for the user, a shortcoming 
that often prevents its use by ecologists (Borowiec et al., 2022). We 
argue that such a step can help expand the potential of deep learning 
to describe and analyse ecological big data. In our example, while 
activation maps are primarily used by CNN for classification, their 
visualisation allows the detection of the specific breeding activities 
or features, such as seasonal phenology. In our application on king 
penguins, the CNN models showed that the presence or absence of 
pre-  and post- winter chick feeding patterns were the most important 
criteria for predicting breeding outcome. Although these regions can 
be used for distinguishing between failure and success, it reinforces 

our interest in using these visualisation techniques not only to under-
stand how our deep learning models work, but also to detect regions 
of interest in our datasets. It also highlights the use of CNN models 
that are not frequently found in ecological studies but have great 
potential, for instance, to detect hidden patterns in large datasets. 
Moreover, to cope with the recent explosion of big data acquisition 
due to increasingly sophisticated, miniaturised, autonomous, and 
powerful data collection instruments (Williams et al., 2020), visuali-
sation tools are becoming increasingly important in detecting similar 
patterns in given classes or differences between similar classes. For 
instance, identifying parts of the vocalisation essential to distinguish 
between species or even individuals is key in bioacoustic studies 
(Kobayashi et al., 2021; Stowell et al., 2016). Visualisation techniques 
have also been used to select the most informative variables to infer 
animal behaviours from multi- sensor data (in green turtles, Chelonia 
mydas, Jeantet et al., 2021) or to select the most relevant morpho-
logical characters to identify species (among midges, Milošević 
et al., 2020 and mosquitoes, Park et al., 2020). By developing tools to 
help users unleash the vast potential of machine learning in ecology 
and to increase numerous benefits of RFID technology, we also aim 
with RFIDeep to foster low- impact monitoring of sensitive species by 
reducing human presence and intervention in wild habitats (Hughes 
et al., 2021; Rafiq et al., 2021). We are convinced that combining au-
tomatic data collection and real- time data analysis and storage will 
help secure key ecological information over time necessary to contin-
uously monitor the health of wild populations and their ecosystems.
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