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step mimicking a shift in breeding dates and missing RFID detections, a com-
mon issue with RFIDs. Third, to identify the segments of the breeding activity
used during classification, we also included a visualisation tool, which allows users
to understand what is usually considered a “black box” step of deep learning.
With these three steps, we achieved a high accuracy for all breeding parameters:
breeding status accuracy=96.3%; phenological accuracy=86.9%; and breeding

success accuracy =97.3%.

. RFIDeep has unfolded the potential of artificial intelligence for tracking changes

in animal populations, multiplying the benefit of automated mark-recapture moni-
toring of undisturbed wildlife populations. RFIDeep is an open source code to
facilitate the use, adaptation, or enhancement of RFID data in a wide variety of
species. In addition to a tremendous time saving for analysing these large data-
sets, our study shows the capacities of CNN models to autonomously detect eco-

logically meaningful patterns in data through visualisation techniques, which are

KEYWORDS

1 | INTRODUCTION

Electronic monitoring systems have been widely used over the
past two decades to better understand animal populations with-
out human disturbance (Fagerstone & Johns, 1987; Schooley
et al., 1993). Radio-Frequency IDentification (RFID) technology al-
lows the monitoring of uniquely identified individuals and automated
recording of the presence of tagged individuals at chosen locations
(Gibbons & Andrews, 2004). By placing RFID antennas along animal
paths, at perches or narrow entries of the breeding site (Bonter &
Bridge, 2011; Zydlewski et al., 2006), individual survival and breeding
rates as well as behaviour and locations can be precisely estimated
in, for example the classical capture-mark-recapture framework
(Le Bohec et al., 2008). While RFID technology allows the record-
ing of vast amounts of data, it also creates new challenges for data
treatment, even if the data structure itself is rather simple (i.e. id,
date and time, and location for each detection; Iserbyt et al., 2018).
Because RFID data are not directly linked with biological parame-
ters, one of the classic approaches is human expert interpretation
(Afanasyev et al., 2015; Descamps et al., 2002). Even today, most of
the information extraction and ecological interpretation from such
detection data is done manually, although this remains extremely
time-consuming and potentially biased by human interpretation.
Additionally, the difficulty in manually processing potentially large
numbers of detection data is increased by the possibility of missing
detections (Hughes et al., 2021).

A solution to these challenges may lie in automated data pro-
cessing that could mimic the behaviour of an expert analyst.
Artificial intelligence has been the focus of intense methodologi-
cal effort in ecology: it has been used to process various sources

seldom used in ecology.

artificial intelligence, behaviour, machine learning, RFID, wildlife monitoring

of data including imagery or passive and active acoustic data, and
to detect, classify, localise, identify, estimate and predict at every
biological scale, from individuals to ecosystems (Christin et al., 2019;
Pichler & Hartig, 2022). Among artificial intelligence methods, deep
learning has a wide and promising scope but often lacks approach-
able workflows for ecologists. Deep learning can be generally de-
fined as a set of methods using “deep” (i.e. multi-layer) networks
of artificial neurons to process and “learn” complex features from
data: see LeCun et al. (2015). Among these, convolutional neural
networks (CNN) have been initially developed for image content
classification (Krizhevsky et al., 2017) but have also been used for
classifying signals (Hinton et al., 2012) such as human activity clas-
sification (Mutegeki & Han, 2020), birds vocalisation classification
(Kahl et al., 2021) or marine mammal detections (Shiu et al., 2020).
Yet, CNN capacities remain unexplored in numerous fields such as
RFID data processing.

Recent efforts have been made to automatically infer be-
havioural patterns from various types of biologgers through Al
(Fannjiang et al., 2019; Wang, 2019): for instance, accelerometers
have shown promising capacities to detect food-catching events
(Brisson-Curadeau et al., 2021) or to classify activity (Jeantet
et al., 2021; Sakamoto et al., 2009). RFIDeep builds upon these
efforts to address the specific nature of RFID data. While active
biologgers record rich, multidimensional data, their record time is
limited because of the required trade-off between miniaturisa-
tion, storage capacity, power consumption and impact on wildlife
(Bodey et al., 2018). In contrast, passive, battery-less RFID tags
have no demonstrable impact on an animal's behaviour and func-
tion throughout the individual's lifetime but the trade-off is that
although the tag is attached to the animal, detection only occurs
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at one or more fixed points (the active antennas), thereby offer-
ing a very narrow observation window, similar to the classical bird
ringing observation approach (e.g. with mist nets). This creates a
rather unique data structure with specific challenges for interpre-
tation. RFID technology is also exposed to two major constraints
because of the impossibility to detect multiple tags at the same
time with a single antenna and the impossibility to instal several
antennas at the same place, due to electromagnetic interference.
By increasing probability of missing detections, the tag and reader
collision problems create a trade-off between the number of de-
ployed tags (the size of the dataset) and the probability of unde-
tected individuals (the completeness of the dataset). This leads to
challenges in inferring missing detections to correct the locations
and movement patterns of individuals. Like in other automated
data processes, such data imperfections need to be considered
and if possible repaired with suitable algorithms.

Here, we demonstrate that non-explicit detection data from
fixed observation points contain enough information to infer in-
dividual behaviour. Taking advantage of the recent developments
in deep learning methods, we develop the “RFIDeep” workflow to
automatically extract breeding status and outcome from detection
data acquired by RFID antennas using CNN. We illustrate how deep
learning methods detect biological features in RFID data with very
high classification accuracy and demonstrate the use of a visualisa-
tion method not yet commonly implemented in ecology.

RFIDeep was initially developed for an “archetypal” real-life
dataset with a ca. 25years-long RFID detection time series col-
lected on known-age/history king penguins Aptenodytes pata-
gonicus (Gendner et al., 2005). Unlike flipper bands used until
then, which are detrimental to the individuals (Gauthier-Clerc
et al.,, 2004), the recording of every transit between the colony
and the sea of RFID-tagged birds, throughout their life, allowed a
more accurate and unbiased description of the reproductive pat-
terns of the species (Descamps et al., 2002), and of the popula-
tion's demographic parameters (Le Bohec et al., 2008). In these
previous studies, all RFID detections were manually analysed by
human experts and none of them used the entire dataset of RFID-
tagged penguins. Since breeding king penguins exhibit highly ste-
reotyped movement patterns (Descamps et al., 2002), they were
good candidates for artificial intelligence classification. Based on
direct field observations and molecular sexing data, we trained
several CNN to infer RFID-tagged penguins' sex, breeding status
and outcome (Breeding vs. Non-Breeding; Success vs. Failure), and
breeding dates. We developed RFID-specific data augmentation
steps to account for biological variance and data acquisition im-
perfections. We trained our classification process with field ob-
servation data and tested it with (i) annotated data to compare the
performance of automatic classification with the human experts
and (ii) independent field observation data.

We provide all source codes used in RFIDeep workflow that
could be applicable for studies using RFID data acquisition and
that could inspire ecologists to develop their deep learning pro-
cess. Finally, a software named Sphenotron, developed to represent

movements and locations (in or outside the breeding site) based on
RFID detections, is provided with a sample dataset as an example of

an RFID data visualisation method.

2 | MATERIALS AND METHODS
2.1 | Overall structure of RFIDeep workflow

Figure 1 summarises the steps needed to classify RFID data within
a deep learning framework and provides a comprehensive view of
the use of the RFIDeep workflow. This workflow can be adapted
to fit other acquisition systems and species, if we have access to
(1) RFID detection data (timestamp and individual ID) collected in
a repeatable way and (2) ground truth data for a subset of indi-
viduals. The size of this ground truth set depends heavily on the
signal-noise ratio in the target system, but a key requirement is
its diversity, which must cover all expected biological situations
(Christin et al., 2019).

2.2 | Application on a seabird species long-term
monitored by RFID

2.2.1 | RFID data acquisition

Here, we used data collected from the colony of king penguins
(A. patagonicus) named ‘La Grande Manchotiere’ and located at
Possession Island, Crozet Archipelago (46°25 S, 51°45 E). This
fieldwork was approved by the French ethics committee (last:
APAFIS#29338-2020070210516365) and the French Polar
Environmental Committee and permits handling animals and ac-
cess breeding sites were delivered by the “Terres Australes et
Antarctiques Francaises”. A sub-area of the colony of ca. 10,000
breeding pairs has been electronically monitored since 1998 with
RFID technology. As of 2022, four pathways between the sea and
the colony (the only ways in or out of the colony) are equipped
with permanent automatic identification systems (the detailed
information of the field site and systems are described in Gendner
et al., 2005). In short, these automatic systems are composed
of paired antennas that record the direction of each commuting
bird that has been implanted subcutaneously with an RFID tag.
Patterns of presence and absence of ca. 15,000 RFID-tagged
birds throughout their breeding seasons and life have thus been
recorded since 1998. This has generated a large (and increasing)
quantity of data, with, for instance, seven million individual detec-
tions as of 2022. To manage, visualise and use information in the
field (e.g. select specific groups of birds of known age or history),
we developed Sphenotron, a python software that displays the lo-
cation (in or out of the colony) of the individuals during their life,
based on the latest known location transition (entrance or exit) for
each bird (see Supporting Information A). Thanks to well-known
king penguin's stereotyped presence/absence patterns at the
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FIGURE 1 Overall structure of the RFIDeep workflow classifying Radio-Frequency IDentification (RFID) data with deep learning. The
workflow is divided into three phases: data preparation, model development, and model deployment. (a) Data preparation. (1) RFID data
acquisition: many individuals are equipped with RFID tags and antenna systems are installed at key locations to register the detections.

A software called Sphenotron (Supporting Information A) has been developed to represent detections and transitions (in or out of a
specific location, e.g. a colony or a nest) of RFID-tagged individuals. A colouring scheme is available to picture the ins (orange, above the
line) and outs (blue, below the line) of tagged individuals. (2) RFID data pre-processing: a correction of missing detections is first applied.
RFID data are then formatted (e.g. in or out of a specific location encoded as 1 and 0, and number of detections per time period) to have
a unique and readable format for deep learning or for other analyses. (3) Building the training dataset: direct observations of RFID-tagged
individuals are used to build a ground truth dataset of labelled vectors giving the true classification. (b) Model development. (4) Building
and tuning the convolution neural network (CNN) models: the architecture of deep learning models and hyperparameters are tuned with
the training dataset. Data augmentation is implemented to cover more biological and technical variance. An individual network is built for
each classification problem (e.g. breeding status, sex). (5) Post-processing: classification networks are derived to extract other biological
information requiring a post-processing step such as location of stereotyped patterns in RFID data (e.g. determination of the breeding
dates with a probability curve (in blue) over presence/absence pattern in black and white, respectively). (6) Visualisation tools: models are
validated and interpreted with visualisation tools (e.g. with black curves representing the focus of the model during the breeding season).
(c) Model deployment. (7) Building the testing datasets: a testing step is used to remove biases induced during parameterisation with
independent datasets (i.e. human expert classifications and independent ground truth dataset). (8) Testing the CNN models: model tests
assess performance but also ensure that models consistently perform according to classes and individual characteristics (e.g. age, sex and
life stage). (9) Application: classifications are applied to all detection data after pre-processing and formatting (i.e. after correction of missing
detections and building of vectors), and results are represented in Sphenotron for each individual (successful breeding cycles “S” in green,
failed breeding cycles “F” in red).
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breeding site (see Figure S7), we can classify the breeding status
of any RFID-tagged individual (Non-Breeding, Failed Breeding,
Successful Breeding). Start of a breeding cycle (breeding date) can
also be determined, it is defined as the beginning of the pattern
characteristic of the courtship and incubation period, that is the
first long sojourn at the colony following the annual moult and
exceeding 10days (Descamps et al., 2002). Additionally, the sex of
an individual can also be derived from presence/absence patterns
at the colony. An automatic sex determination has great potential
application for many species where sex determination is challeng-
ing (i.e. monomorphic species like king penguins).

2.2.2 | RFID data pre-processing

Input data

To prepare the detection data in an appropriate format, we chose
to represent absence and presence time-series for each breeding
cycle with two vectors providing the location of the individual at
the end of 12-h periods (states O and 1) and the number of de-
tections occurring during the 12h (Figure S8). For one individual
and one given year n, we built vectors encompassing the breeding
cycle. For the King penguin, vectors start 1 October of the year Y
and end 31 January of the year Y+2 to cover the entire >1-year
breeding cycle of the species (Figure S7). We obtained two vectors
of 974 elements for each individual and each year. This step can be
tailored to match other RFID acquisition systems and species, for
instance by dropping the first vector when no location (‘in’ or ‘out’)
is defined but only simple detection are recorded, for example at
a feeding site.

Missing detection correction

To tackle missing detections that can occur when individuals exit or
enter their breeding site, we developed an algorithm to repair sim-
ple missing detections (i.e. detections on only one antenna of a pair,
resulting in uncertainty in the individual's walking direction), as was
similarly done by Austad et al. (2023). These corrections are usually
trivial: for example, when an individual is detected only on the inside
antenna, followed later by an entrance (i.e. outside-inside transition),
an outside detection is inferred to restore a valid pattern in detec-
tions corresponding to the missed exit from the colony. We simply
built the algorithm to detect all unrealistic successions of detections
and to add the corresponding missing detections in all possible cases

(see Supporting Information B).

2.2.3 | Building the training dataset

To build a training/ground truth dataset, we visually monitored
295 RFID-tagged individuals over 9years (2011-2019), assessing
their breeding status and behaviour directly through field obser-
vations. Birds were monitored from the beginning of the breeding
season (November-January), thereby we were able to detect early

breeding failures that may have been difficult to distinguish from
non-breeding behaviour using RFID detections alone. Breeding out-
comes (S: Success; F: Failure) from these study birds was determined
according to the survival of their chicks until they fledged. The sex of
individuals was determined with the observation of their first period
in the colony, as females leave the breeding site right after egg lay-
ing, while males care for the egg (Descamps et al., 2002). A ground
truth database with breeding status, timing of breeding, and sexing

for 463 breeding cycles was then compiled over the years.

2.2.4 | Building and tuning the CNN models

Several models were built to describe breeding activities from regu-
lar movement patterns (see Figure S7) with a classification workflow

(see Figure S9):

1. Two models to determine if an individual in a given year was
a breeder (Breeding vs. Non-Breeding) and if the breeding
cycle was successful (Success vs. Failure),

2. A model to distinguish the sex of an individual through sex classi-
fication of only breeding cycles and a prediction compiling all the
sexes identified over the lifetime breeding seasons,

3. A model to determine the most likely breeding date of males and

females separately, through post-processing of a CNN model.

CNN architecture of these models was chosen using a classical
simple architecture (see LeCun et al., 2015) and through trial and
error (see details in Figure $10). Each model was trained on a train-
ing set of 80% of the dataset, and the remaining 20% was used as a
validation set to measure model performances and avoid overfitting
(shown by low validation accuracy and high training accuracy), as
suggested by Christin et al. (2019). Multiple training of the models
with random splitting of the training/validation sets was performed
to cross-validate the hyperparameters. Once the final hyperparam-
eters were chosen, validation accuracy with the 20% validation set
was recorded, and the final models were trained with 100% of the
training datasets. When the models were applied to detection vec-
tors to generate the classifications, the most probable class was cho-
sen for the classification.

To extend the generalisation capacities of our models, we used a
data augmentation process during the training of the models, in the
sense of a distortion of the data (LeCun et al., 1998). In other words,
during the training, the dataset is perturbed in a controlled way at each
iteration: while the data quantity remains unchanged, its variability is
increased, thus covering more possible situations, and avoiding over-
fitting. We used two types of augmentation: the first one consisted in
shifting the breeding cycles by a random number of days, as usually
done with imagery data to make the models translational invariant. At
each iteration of the training, we shifted each training vector by a zero
padding at the end or at the beginning of the vector, while trimming the
same number of elements on the opposite side. We used a random off-
set between -30 and 30days to cover large biological variability in the
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phenology of our species (but this can be easily changed in the code,
and this step can be turned off). The second part of data augmentation
focused on simulating missing RFID detections. In the actual dataset,
the most frequent problem is the loss of a single detection, which is
solved by our correction algorithm. Therefore, we chose to remove
10% of the single detections at each iteration, before applying our cor-
rection algorithm, allowing a complete recovery of the original detec-
tions for at least 50% of individuals (see Supporting Information C) and
leaving uncorrected detections and erroneous locations to improve
training generality. Models for determining the breeding status were
trained with and without these data augmentation processes to assess
the benefits of this step.

2.2.5 | Post-processing

Sex determination
With RFID detections of king penguins, a human expert can only
distinguish males and females based on the length of the first peri-

ods in colony of the breeding cycles, therefore we thought it safer

to assume that prediction over a single breeding season would be
less reliable than prediction over the whole lifetime. We then aver-
aged the classification probabilities for each sex, for each identified
breeding attempt and we obtained the most probable sex over the
lifetime of the individuals. We also registered the sex classification
for each breeding cycle to measure the benefit of this pooling in clas-
sification performance. This step can be skipped for species where
sex is readily identified but can be useful for species such as seabirds

in which sex can be more easily determined using behavioural data.

Breeding date

We used CNN models to determine the breeding date by scanning
all possible breeding cycles in a year and determining the most prob-
able one (see Supporting Information D for details on the method).
We obtained a certainty curve along the year, with the maximum
corresponding to the most probable breeding date (as illustrated in
Figure 2 with two true breeding cycles). In our King penguin study
case, we trained two different models for males and females sepa-
rately to account for the difference in patterns at the beginning of

their breeding cycles.

Certainty map giving most probable breeding date according to RFID detections for a male

11 —— Certainty curve
----- Maximum of certainty curve

205
=
©
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0 -

2018-11-01 2018-12-01 2019-01-01 2019-02-01 2019-03-01
Certainty map giving most probable breeding date according to RFID detections for a female
11 —— Certainty curve
----- Maximum of certainty curve

2 0.5
=
©
Qo
o
o

0

2016-11-01 2016-12-01 2017-01-01 2017-02-01 2017-03-01

FIGURE 2 Examples of certainty maps produced by the scanning algorithm to detect the beginning of a stereotyped pattern. Here,
the most probable breeding date of a male and a female was determined. The blue curve represents the probability (between 0 and 1)
that the breeding cycle starts on a relevant date. The black and white bars in the lower part of the figures represent the location of the
Radio-Frequency IDentification (RFID)-tagged individual (inside and outside the colony, respectively). The most probable breeding date

corresponds to the maximum of the blue curve (dashed line).

85U80]7 SUOWIWIOD 3AEa.D 3(qetjdde au3 Aq peurob afe sajole VO ‘88N J0 Sa|nJ Joj AIq1T8UlUO AB]IM UO (SUOTHIPUOD-PUE-SWLBIW0D A8 | 1M ARIq U1 UO//SANY) SUORIPUOD PUe SW | 84} 88S *[202/TO/TT] Uo ARIqiTauliuo A8|IM ‘e Jeq %eyiol|qigs Laeisienun Aq Z8THT  X0TZ-Tv0Z/TTTT OT/I0p/L00" A3 1M Akeid 1 pulUO'S EuINo Baq// sy Woly papeojumod ‘TT ‘€202 X0TZTY0Z



2820 | Methods in Ecology and Evolution

BARDON ET AL.

2.2.6 | Visualisation tools

We used visual explanation techniques to show parts of the input
data that are identified by the convolutional layers and used to
perform the classification. We leveraged techniques recently de-
veloped to produce heat maps on images classified by a 2-D CNN
algorithm to show which pixels contribute most to the classification
(saliency maps, Zeiler & Fergus, 2014 and class activation mapping,
Zhou et al., 2016). We produced this type of visualisation on breed-
ing cycles with the GRADient-weighted Class Activation Mapping
(Grad-CAM) algorithm (Selvaraju et al., 2017) that was directly ap-
plicable to the 1-D CNN layers. In short, the Grad-CAM uses the
gradients of the final convolutional layer to produce a coarse locali-
zation map from an input image (or vector) by searching for pixels
whose intensity should be increased to increase the probability of a
given class. We ran this algorithm on all breeding cycles in our data-
set and obtained a graph of importance value for each element of
the vector (each 12-h period in our example) for a particular class of
interest. We computed these activation plots and compared to the
raw input detection data for (1) the Breeding versus Non-Breeding
model, which restricts the dataset to breeding cycles classified as
breeding in order to identify the features used by the algorithm to
detect a breeding cycle, and (2) the Success versus Failure model,
which includes only breeding cycles classified as successful in order
to identify the regions of the breeding cycle that were indicative of

a success.

2.2.7 | Testing the CNN models

To test the overall classification performance, we used a
global accuracy metric of the different models given by
ACC = N grrectpredictions / Npredictions (Powers, 2020). Since our ground
truth datasets were well balanced across classes (168 Non-Breeding;
131 Failure; 164 Success), the global accuracy metric did not ap-
proach its limits through class unbalance, and it provided a simple and
effective metric of overall classification performance for training. To
provide a measure of classification accuracy for all possible classifi-
cation thresholds, we also used the AUC-ROC score (Area Under the
Receiver Operating Characteristic Curve; Fawcett, 2006). To assess
the accuracy of breeding date determination, we used a threshold
of 5days between the true breeding date and the predicted date
to define whether or not a breeding date was correctly predicted
(see Supporting Information E). Two fully independent datasets that
were never used in model training were used to quantify an unbiased
estimate of model performance (Kuhn & Johnson, 2013): (i) an addi-
tional ground truth dataset for years 2021 and 2022 containing 302
field observations of breeding outcomes only (Successful or Failed
breeding seasons) and (ii) a blind-labelled testing dataset encompass-
ing 917 breeding cycles of penguin individuals: breeding status and
breeding date were not determined through field observations but
by human experts who examined the RFID detections of individuals
using our custom-designed Sphenotron software (see Supporting

Information A). Human experts, with a strong knowledge and expe-
rience of the species in the field, were trained using the ground truth
dataset, blindly examining detection data to infer breeding cycles,
and cross-checking previously assigned breeding cycles. Two human
experts were chosen to label the same dataset, and we tested our
models with both classifications. We also computed the global accu-
racy metric between the datasets labelled by the two human experts
to assess human variability in classification. The performance of the
lifetime sexing method was compared to a molecular sexing data-
set of 6196 birds (molecular sexing method adapted from Griffiths
et al., 1998 showing 100% accuracy in typical cases, Purwaningrum
et al., 2019). Because sex was estimated with a variable number of
breeding cycles between individuals (we used all available breeding
cycles for each bird), we also tested whether the accuracy of pooled
sexing increased when including additional breeding cycles. Finally,
we computed the accuracy of the models for each age class and for
males and females separately to test whether the performance of
our models was consistent over the whole dataset.

3 | RESULTS
3.1 | Model training

We chose 200 epochs (i.e. training iterations) for training of
each model, which yielded the best results for validating model
accuracy while avoiding overfitting. Each model took approxi-
mately 1 h to train using a laptop computer with a CPU Intel Core
i7-10750H (2.60GHz) and a GPU Nvidia GeForce GTX 1660 Ti,
a non-prohibitive technology as of 2023. The performance of
models, according to the validation datasets used to select the
CNN architecture and hyperparameters, reached near perfec-
tion for the three models, that is Breeding versus Non-Breeding,
Success versus Failure, and Male versus Female, with global ac-
curacy of 99.1%, 99.7% and 100%, respectively. As expected, the
three models without a data augmentation step achieved lower
performances with global accuracy of 94.6%, 91.5% and 96.6% for
Breeding versus Non-Breeding, Success versus Failure, and Male

versus Female, respectively.

3.2 | Model visualisation

Activation maps L¢ (Figure 3) showed that for the vectors

(grad—CAM)
classified in the Breeding class (i.e. individuals that attempt to breed;
Figure 3a,c), the model focused on the beginning of breeding, when
long periods in the colony occur for breeders but not for non-
breeding birds that do not have long fasting periods on the breed-
ing site. For the Success class (Figure 3b,d), the model focused the
pre-winter period and the post-winter feeding period. As expected,
these are the parts of the breeding cycle that can be missing if the
breeding fails during incubation, brooding or even during the winter

fasting period. Unsurprisingly, the visualisation maps relied on the
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(a) Example of breeding with activation map (blue curve)

l

2013-10-15 2013-12-01 2014-02-01 2014-04-01 2014-06-01 2014-08-01
(b) Example of successful breeding with activation map (blue curve)
2011-10-15 2012-01-01 2012-04-01 2012-07-01 2012-10-01 2013-01-01

(c) Activation maps for breeding class

(d) Activation maps for successful breeding class
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FIGURE 3 Activation map (blue curve) showing regions of the cycle used by the convolution neural network procedure to produce
the classifications and simplified presence/absence pattern (black: inside the colony; white: outside the colony) for two true breeding
cycles (a, b), and median maps (c, d) illustrating all maps with the median curve, the first quartile and the third quartile. (a, c) Correspond
to the Breeding class (all breeding cycles classified as Breeding) and (b, d) to the Success class (all breeding cycles classified as Success),

respectively.

same regions that human experts reported using as criteria for de-
termining whether individuals actually attempted to breed and suc-
ceeded in breeding.

3.3 | Model deployment

The trained models were used to predict the breeding status and
dates of all RFID-tagged individuals since 1998 (i.e. 85,524 breeding
cycles from 14,795 different individuals). On the laptop computer
used here, prediction (from raw RFID data to classification) of breed-
ing status and sex of all birds required 140s, but it took 1.1 h for the
determination of the breeding date due to the number of predictions
needed (320 for each breeding cycle). In comparison, it took a human
about 1 min to make the same decision as RFIDeep for one bird and
one breeding cycle, which would correspond to 1320h or 165 work-
days (8 h per day) to classify all breeding cycles. Tests of model's clas-
sifications against two human expert classification datasets resulted
in high global accuracy metric (Table S1, e.g. ACCgyng = 0.963 and
ACCs,r = 0.967 for prediction vs. dataset 1). Similarities between
the expert-labelled datasets were globally equivalent to the accuracy

of our CNN models, indicating the high performance of the auto-
matic classification procedure. The AUC scores of Breeding versus
Non-Breeding and Success versus Failure computed with the human
expert classification were even higher (e.g. AUCg,\g = 0.993 and
AUC . = 0.992 for prediction versus dataset 1, see Figure S11). As
expected, models with data augmentation